Cilíndricos - CA, CPA, MCA, MCPA

BOLETIM B028-PS-20-ATENUADORES CA MCA

A MELHOR TECNOLOGIA

Os atenuadores cilíndricos da SOMAX são produzidos sob licença exclusiva e com a cooperação tecnológica dos melhores fabricantes de equipamentos de controle de ruídos do mundo.

Essa linha, versátil, é capaz de suprir as necessidades do mercado de HVAC, Industrial e também as aplicações especiais.

UNIDADES MÉTRICAS E/OU INGLESAS

Os atenuadores denominados CA e CPA têm as suas dimensões padronizadas em unidades inglesas, e os denominados MCA e MCPA são métricos, permitindo a perfeita concordância de diâmetros dos atenuadores com a tubulação ou o equipamento a ser atenuado, seja qual for o sistema de unidades adotado.

"POD" DE ABSORÇÃO ACÚSTICA

Os modelos CPA e MCPA possuem um miolo de absorção acústica, "POD", concêntrico com calota aerodinâmica, que tem a função de ampliar a capacidade de atenuação de ruídos.

TAMANHOS

A linha Standard possui diversos diâmetros de atenuadores cilíndricos e cada diâmetro com 2 comprimentos padronizados: 1D e 2D. 1D significa que o comprimento é igual ao diâmetro interno do atenuador e 2D que o comprimento é igual ao dobro do diâmetro. Outros comprimentos e diâmetros podem ser fabricados sob consulta ao departamento de Engenharia de Aplicações da SOMAX.

CARACTERÍSTICAS CONSTRUTIVAS

Os atenuadores de ruídos cilíndricos da SOMAX são construídos com carcaça, estrutura do "POD" e calota aerodinâmica em chapa de aço galvanizado. O enchimento das células absorvedoras de ruídos é feito com EUROLON® e a proteção da mídia de absorção é feita com chapa de aço perfurada e galvanizada.

EUROLON® - Mídia de Absorção Acústica

A composição do EUROLON® consiste de lã de vidro semi-rígida com densidade controlada, tratada com adesivo especial, recoberta com tecido de fibra de vidro com diâmetro de fios e malha especificamente projetados para a obtenção do melhor rendimento acústico, resultando em um material inerte, não higroscópico, não sujeito à putrefação, inóspito para insetos, animais daninhos, fungos e bactérias.

O EUROLON® foi intensamente testado quanto à resistência ao fogo de acordo com a norma BS476 (Fire Test on Building Materials and Structures) partes 5, 6 e 7, tendo obtido as seguintes classificações:

BS476 Parte 5: "Teste de Inflamabilidade para Materiais" Classe 'P'.

BS476 Parte 6: "Teste de Propagação de Fogo para materiais" Índice de Performance (I) = 9.5P e Sub-índice (i) = 5.4.

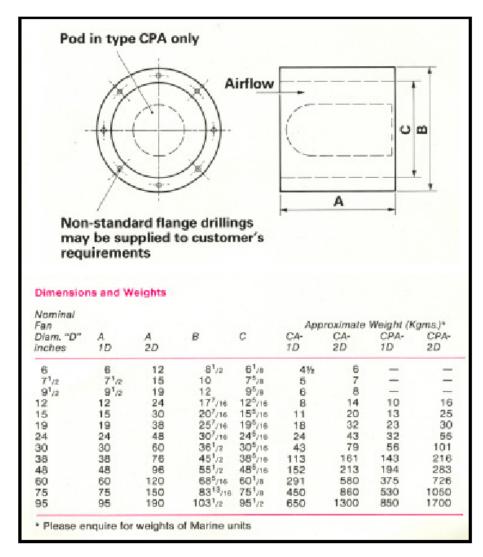
BS476 Parte 7: "Teste de Propagação de Chamas em Superfície" Classe 1.

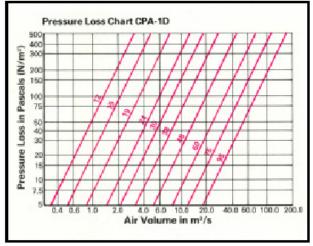
Conseqüentemente, o Eurolon® é classificado em "Class 0" de acordo com "Building Regulations E15 1976" e pelo "Lloyds Register of Shipping Certificate" é classificado como "Material having Low Flame Spread Characteristics", compreendendo inclusive o seu uso em "Offshore Installations".

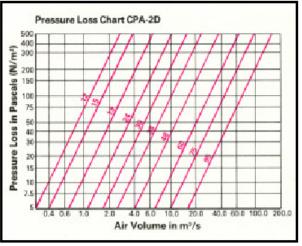
APLICAÇÕES

Os atenuadores cilíndricos CA, MCA, CPA e MCPA são indicados para uso no tratamento de ruídos em aplicações industriais e comerciais, com ampla faixa de utilização em projetos de alta responsabilidade e qualidade de engenharia. Dentre as principais aplicações podem ser destacadas:

- Sistemas de ventilação ou exaustão com tubulação cilíndrica.
- Sistemas de ar condicionado, ventilação e exaustão em plataformas de petróleo.
- Sistemas de ventilação de minas e construções subterrâneas.
- Na admissão e descarga de jato-ventiladores em túneis rodoviários e/ou ferroviários.
- Na admissão de ventiladores centrífugos.
- Na admissão e descarga de ventiladores axiais ou vane-axiais.
- Na redução de ruídos de chillers a ar e torres de resfriamento.


SOMAX Ambiental & Acústica Itda. - Divisão Acústica e-mail: somax@somaxbrasil.com.br http://www.somaxbrasil.com.br http://www.somaxbrasil.co


Cilíndricos - CA, CPA, MCA, MCPA



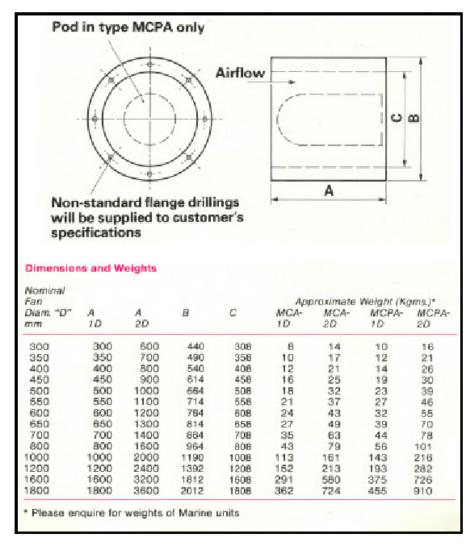
BOLETIM B028-PS-20-ATENUADORES CA MCA

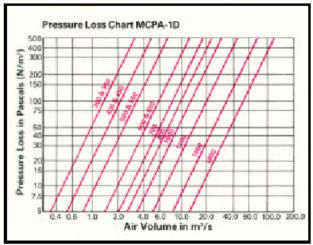
CA e CPA

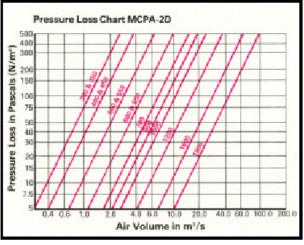
Nota: A perda de carga do atenuador CA é desprezível. Os gráficos acima são válidos para os CPA.

Cilíndricos - CA, CPA, MCA, MCPA

BOLETIM B028-PS-20-ATENUADORES_CA_MCA


Dynamic Insertion Loss, dB Nominal Approx. Fan Pitch					Ban	d Nun				Band		Fan Diam.	al Band Number and Octave Band Mid Frequency Hz 1 2 3 4 5 6 7 8								
ran Dia. 'D' inches	Attenuator Length	Type	Angle Setting*	1 63	2 125	3 250	4 500	jency 5 1 k	Hz 6 2k	7 4k	8 8k	inches 6	21	15	250 10	5	1	0	0	0	
6 7½ 9½	1D	CA-1D	All	2	3	4	9	15	14	9	9	7½ 9½	19	13	7	3	0	0	0	0	
	2D	CA-2D	Low Med. High	4 4 4	6 6 6	8 8 7	17 16 14	24 23 21	23 22 22	17 17 16	17 17 16	12 15 19 24	14	10 8 6 5	5 4 2 1	1 0 0	0000	0000	0000	0000	
12 15 19	1D	CA-1D	All	2	4	6	10	14	10	7	8	30 38	8	2	0	0	0	0	0	0	
		CPA-1D	Low Med. High	4 4 4	6 6	8 8 8	13 12 11	20 18 13	21 19 16	18 16 12	16 14 11	48 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								0000	
	2D	CA-2D	Low Med. High	4 4 4	7 7 7	12 11 10	18 17 15	22 21 19	17 17 16	13 13 12	13 12 10	Notes									
		CPA-2D	Low Med. High	7 7 7	10 10 10	15 15 15	24 21 16	32 26 15	35 26 17	30 24 13	28 22 13	Most fan i acoustic p publicatio 2: in-duct	perfo ns ir data	n acc	nce d ordar uld be	ata ii nce v use	n the vith E d wh	ere t	348, the fa	Pai	
24 30	1D	CA-1D	All	3	4	8	14	14	9	8	7	connected to a duct distribution system. When a type CA or CPA attenuator is direct-									
		CPA-1D	Low Med. High	4 4 4	6 6	9 9	17 17 16	26 23 17	21 20 16	18 18 14	12 11 11	connected to the free inlet or discharge of an axial flow fan whose performance data is quoted only in in-duct terms, the above additional figures in attenuation may be									
	2D	CA-2D	Low Med. High	6 6	8 8 8	14 13 12	23 22 20	24 22 18	15 14 13	13 13 11	10 9	added to the values given in the dynamic insertion loss table. Dynamic insertion loss is not significantly affected by fan speed on either type of									
		CPA-2D	Low Med. High	8 8 8	11 11 11	16 16 16	30 27 24	39 32 23	35 32 23	32 29 24	22 19 17	attenuato diameter : reduces to	r: as so in oget	fan s icidei her w	peed nt sou rith vo	is lo and p olum	were cowe e flo	ed fo er lev w. V	ragi vel	ve	
38	1D	CA-1D	All	3	4	9	14	12	8	7	7	approxima power lev	ately						und		
48		CPA-1D	Low Med. High	4 4 4	666	11 11 11	22 20 17	21 19 17	16 15 14	14 13 12	11 11 11	Dynamic insertion loss is mainly affected pitch angle setting on the type CPA: with type CA, the velocities are greatly reduct								the	
	2D	CA-2D	Low Med. High	6 6	8 8 8	14 13 12	22 21 19	20 18 15	13 12 11	12 11 10	10 10 9	and regeneration then becomes less important. *The pitch angle settings — low, mid and his correspond to settings of approximately 10									
		CPA-2D	Low Med. High	8 8 8	11 11 11	19 19 19	30 26 21	32 27 20	30 26 22	24 22 20	17 17 16	20° and 30 pitch blad settings m	0° or es. F	axia igun	I flow es for	fans	s with	h ad	justa angl	ible	
30	1D	CA-1 D	All	4	5	10	14	11	7	6	6										
75 95		CPA-1D	Low Med. High	5 5 5	7 7 7	12 12 12	21 19 15	20 18 16	14 13 12	12 11 10	9 9 8										
	2D	CA-2D	Low Med. High	8 8	9 9	15 14 13	20 20 19	19 17 14	12 11 10	11 10 9	9 9 8										
		CPA-2D	Low Med. High	10 10 10	14 14 14	22 22 22	28 25 21	31 27 21	29 25 21	18 16 15	15 15										


Cilíndricos - CA, CPA, MCA, MCPA



BOLETIM B028-PS-20-ATENUADORES CA MCA

MCA e MCPA

Nota: A perda de carga do atenuador MCA é desprezível. Os gráficos acima são válidos para os MCPA.

Cilíndricos - CA, CPA, MCA, MCPA

BOLETIM B028-PS-20-ATENUADORES_CA_MCA

Dynamic Insertion Loss, dB **Rominal Approx. Band Number and Octave Band												Nominal Band Number and Octave Fan Band Mid Frequency Hz											
Nominal Fan			Approx. Pitch			Mid	Frequ	Jency	HZ			diam. mm	1 63	2 125	3 250	500	5 1k	6 2k	7 4k	8			
diam. 'D' mm	Attenuator Length	Туре	Angle Setting*	1 63	2 125	3 250	4 500	5 1k	6 2k	7 4k	8 8k	8 300 350	15 14	10	5	2	0	0	0	0			
300	1D	MCA-1D	All	2	4	6	10	14	10	7	8	400 450	13	8	4	1 0	0	0	0	0			
350 400 450		MCPA-1D	Low Med. High	4 4 4	6 6	8 8 8	13 12 11	20 18 13	21 19 16	18 16 12	16 14 11	500 550 600	11 10 9	6 5 5	2 1	0 0	0 0	0	0 0 0	0000			
500 550	2D	MCA-2D	Low Med. High	4 4 4	7 7 7	12 11 10	18 17 15	22 21 19	17 17 16	13 13 12	13 12 10	650 700 800 1000	9 8 7 5	4 3 2	1 1 0	0 0 0	0 0	0 0 0	0 0 0	000			
		MCPA-2D	Low Med. High	7 7 7	10 10 10	15 15 15	24 21 16	32 26 15	35 26 17	30 24 13	28 22 13	1200 1600 1800	5 2 2	1 0	0	0	0	0	0	000			
600	1D	MCA-1D	All	3	4	8	14	14	9	8	7	Notes											
650 700 800		MCPA-1D	Low Med. High	4 4 4	6 6	9	17 17 16	26 23 17	21 20 16	18 18 14	12 11 11	Most fan acoustic publicatio	perfo	rma n acc	nce i	data i ince v	n thei vith B	5.8	18, F	98			
	2D	MCA-2D	Low Med. High	6	8 8 8	14 13 12	23 22 20	24 22 18	15 14 13	13 13 11	10 9 9	2: in-duct connecte When a t direct-con	d to	a du MCA ted t	or Mo	stribut ICPA free	atten inlet	rste uato or di	m. Ir is scha	arg			
		MCPA-2D	Low Med. High	8 8	11 11 11	16 16 16	30 27 24	39 32 23	35 32 23	32 29 24	22 19 17	of an axia quoted or additiona added to	nly in I figu the v	in-d res i alue	luct t in att s giv	erms, enual	the a	bov ay t	e e	а			
1000	1D	MCA-1D	All	3	4	9	14	12	8	7	7	insertion Dynamic				is no	t sian	fica	ntly				
1200		MCPA-1D	Low Med. High	4 4 4	6 6	11 11 11	22 20 17	21 19 17	16 15 14	14 13 12	11 11 11	Dynamic insertion loss is not significantly affected by fan speed on either type of attenuator; as fan speed is lowered for a given diameter so incident sound power level reduces together with volume flow. Very											
	2D	MCA-2D	Low Med. High	6 6 6	8 8 8	14 13 12	22 21 19	20 18 15	13 12 11	12 11 10	10 10 9	convenier approxim power lev	conveniently, regeneration reduces approximately in step with the fan sound power level.										
		MCPA-2D	Low Med. High	8 8 8	11 11 11	19 19 19	30 26 21	32 27 20	30 26 22	24 22 20	17 17 16	Dynamic pitch angl type MCA and reger	e set t, the nerat	ting velo	on the	e type s are	e MCI great	A:v	vith	th			
1600	1D	MCA-1D	All	4	5	10	14	11	7	6	6	*The pitcl		le se	ettino	s—I	ow. m	id a	nd h	ial			
1800		MCPA-1D	Low Med. High	5 5 5	7 7 7	12 12 12	21 19 15	20 18 16	14 13 12	12 11 10	9 9 8	correspor 20° and 3 pitch blad settings n	nd to 0° on les. F	setti axia igur	ings al flor es fo	of app w fan: or othe	proxir s with er bla	adji de a	ly 10 usta ngle	o°, ibili			
	2D	MCA-2D	Low Med. High	8 8	999	15 14 13	20 20 19	19 17 14	12 11 10	11 10 9	9 9 8							-/14	and to				
		MCPA-2D	Low	10	14	22	28	31	29	18	15												